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Abstract 

 
James F. Woodward has made a prediction, based on Sciama's formulation of Mach's Principle in 
the framework of general relativity, that in the presence of energy flow the inertial mass of an 
object may undergo sizable variations, changing as the 2nd time derivative of the energy.  We 
describe an attempt to observe the predicted effect for a charging capacitor, using a technique that 
does not require a reactionless force or any local violation of Newton's 3rd law of motion.  We 
attempt to observe the effect of the mass variation on a driven harmonic oscillator with the 
charging capacitor as the oscillating mass.  Positive and negative phase shifts in the oscillator 
motion with respect to the driving force are predicted to result from appropriately programmed 
inertial mass variations.  The phase shift is constant, so that data may be accumulated over a very 
large number of oscillation cycles to insure high precision in the phase shift determination.  We 
report on the predicted effect and the design and implementation of the measurement apparatus.  
At this time, however, we will not report on observations of the presence or absence of the 
Woodward effect. 
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Introduction 
 

This is a status report on a new experiment to test 
a prediction based on general relativity and Mach’s 
Principle, which has been supported by the Break-
through Propulsion Program of NASA. 

Einstein’s Principle of Equivalence, a cornerstone 
of general relativity, asserts the exact universal identity 
of inertial mass and gravitational mass.  However, the 
origins of inertia and its connection to gravitational 
mass remain obscure.  Mach's Principle, the idea that 
inertia originates in the gravitational interaction of 
massive objects with the distant matter of the universe, 
is an attempt to unify gravitational and inertial mass, 
but it is not a part of general relativity.  Dennis Sciama 
[1,2] attempted to improve this situation by showing 
that, for sufficiently symmetric and homogeneous 
universes, the gravitational interaction of massive 
objects with distant matter leads to an acceleration-
dependent force, i.e., inertia. 

James F. Woodward [3,4] extended Sciama's 
calculations by introducing energy flow (e.g., the 

energy flowing to a charging capacitor) into the 
gravitating system. He demonstrated that the equations 
acquire extra transient contributions in Sciama's inertia 
term that are proportional to 1/G (Newton’s gravitat-
ional constant) and therefore are quite large.  The 
implications of this work are: (a) that it may be 
possible to modify inertia, and (b) that it may be 
possible to demonstrate the validity of Mach's Principle 
with a tabletop experiment. 

Woodward and his students [4-7] have attempted 
to observe the predicted inertia-variation effect by 
accelerating a mass-varying object so that it produces a 
reactionless force.  To illustrate this, assume that an 
inertia-varying test mass is accelerated to the right 
when it has low inertia and to the left when it has high 
inertia.  In this circumstance, it is argued, the reaction 
forces of the two accelerations are unequal and one 
might expect the net reactionless force to “row” the 
system to the right.  Woodward’s group reports [7] 
using a sensitive torsion balance to observed small 
reactionless forces at magnitudes that are near the 
limits of their sensitivity and about five orders of 
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magnitude smaller than the predicted effect (see the 
calculations below.) 

Unfortunately, this scheme for observing the 
predicted inertia variation appears to be at odds with 
the relativistically invariant form of Newton's 2nd law 
of motion: 

dm/dt v /dt vd m /dt pd  F rrrr
+==  (1) 

 
Since the inertial mass m of the test body is 

expected to vary with time, the last term of Eqn. (1) 
cannot be ignored.  It is not surprising, in view of 
Newton's 3rd law of motion, that for any closed cycle of 
acceleration and variation of the inertial mass around a 
central value, the force contribution from the v dm/dt 
term is found to precisely cancel the supposed 
"reactionless force" arising from the m dv/dt term, 
leading to a net force of zero for the overall system. 

From this simple calculation, it appears that 
reactionless force searches are not good tests of the 
proposed effect.  There remains the question of 
whether the Woodward inertia variation is indeed 
present in a system with energy flow.  We have found, 
as will be described below, that a mechanical 
oscillator, driven at resonance, with its mass 
programmed to vary at the drive frequency, shows 
sensitive variations in drive-to-response phase and 
amplitude, depending on the relative phase between the 
mass variation and the oscillator drive. 
 
 
Theory 

 
Woodward has shown [5] that the relativistically 

invariant wave equation, in the simplest approximation 
and expressed as a function of an overall scalar 
gravitational potential φφφφ, has the form: 
 

∇∇∇∇.φφφφ - (1/c2)(∂∂∂∂2φφφφ/∂∂∂∂t2) =  φφφφ  =  4ππππGρρρρo + 
(φφφφ/ρρρρoc2)(∂∂∂∂2ρρρρo/∂∂∂∂t2) −−−− (φφφφ/ρρρρoc2)2(∂∂∂∂ρρρρo/∂∂∂∂t)2 (2) 

  
where G is Newton’s gravitational constant, ρρρρo the rest 
mass density, and c the speed of light.  This field 
equation is obtained only if one assumes, as suggested 
by Mach’s Principle, that the local energy density of 
matter is equal to the matter density times φφφφ.  Since 
Mach’s Principle demands that φφφφ = c2 when measured 
locally, this constraint is equivalent to asserting that E 
= mc2.   Additional terms would be present in this 
equation were it not for the fact that, as a consequence 
of Mach’s principle in this approximation, φφφφ = c2. 

In writing Eqn. (2), Woodward neglects a term of 
the form c−−−−4(∂∂∂∂φφφφ/∂∂∂∂t)2 because it is always small, given 
its c−−−−4 coefficient that is not compensated for by any 
factor of φφφφ in the numerator.  Combining the last three 
terms of Eqn. (2) into an effective mass density ρρρρ(t) 
and solving for this quantity gives the time-dependent 
effective mass density as: 
 

ρρρρ(t) ≈≈≈≈ ρρρρo ++++ (1/4ππππG)[(φφφφ/ρρρρoc2)(∂∂∂∂2ρρρρo/∂∂∂∂t2)] 
                       −−−− (1/4ππππG)[(φφφφ/ρρρρoc2)2(∂∂∂∂ρρρρo/∂∂∂∂t)2]. (3) 

 
The second term in Eqn. (3) has the form 

(1/4ππππG)[(φφφφ/ρρρρoc2)(∂∂∂∂2ρρρρo/∂∂∂∂t2)].  This time-dependent 
fluctuation in the inertial mass can be both positive and 
negative when ρρρρo undergoes periodic time variations, 
e.g., when a varying flow of mass-energy is present.  
This is the inertia-varying term of interest. 

In the present work we will ignore the last time-
dependent or “wormhole” term, which has the form 
−−−−(1/4ππππG)[(φφφφ/ρρρρoc2)2(∂∂∂∂ρρρρo/∂∂∂∂t)2].  This mass term is always 
negative or zero and for sinusoidal variations is about 
0.1% or less of the other terms. 

If a capacitance C is driven by a voltage source 
with time dependent potential V(t) = V0Sin(ωωωωt), then 
the energy in the capacitor, assuming dissipative and 
inductive effects can be neglected, is U(t) = ½C V(t)2 
= ½C V0

2Sin2(wt).  The second time derivative of this 
stored energy divided by c2 (to convert it to a mass) is 
d2U/dt2 = C V0

2 ωωωω2 Cos(2ωωωωt)/c2.  This is the (∂∂∂∂2ρρρρo/∂∂∂∂t2) 
factor in Woodward's Eqn. (3).  The corresponding 
time dependent variation in inertial mass, assuming 
that φφφφ=c2, is then: 

 
dm(t) = 1/(4ππππρρρρoG c2) C V0

2 ωωωω2 Cos(2ωωωωt). (4) 
 
We will use this form for the variation in inertial mass 
in the analysis that follows. 

To give this prediction a scale, let us assume that 
c=2.998×108 m/s, G=6.672×10−11 m3/kg s2, ρρρρ0=2,000 
kg/m3, C=9.3×10−9 F, V0=2,000 V, and ωωωω=2π×1,000 
Hz.  With these values, we find that: 

 
dm(t) = 9.7 mg × Cos(2ππππ×2,000 Hz×t). (5) 

 
In other words, under these conditions, which 

should be realizable in the experiment described here, 
the inertial mass of the capacitance is predicted to vary 
by about ±10 milligrams at twice the capacitor charging 
frequency, or 2,000 Hz.  If the mass of the capacitor 
and its holder were about 1 g, this would represent a 
mass variation of about ±1%.  Such a mass variation 
would have large observable consequences.  However, 
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we note that Woodward [4] has made arguments 
involving mobile charges to explain why the actual 
variation in the inertial mass may be orders of 
magnitude smaller than that predicted by simple 
calculations and more consistent with his reported 
observation of very small reactionless forces. 

It is also of interest to consider the maximum 
current flow that is necessary to charge the capacitor in 
the manner assumed above.  The charge on the 
capacitor is q=C V(t), so the charging current is i(t) 
=C dV/dt = C V0 ωωωωCos(ωωωωt) = 116 mA × Cos(ωωωωt) for 
the specified conditions.  It turns out that a high voltage 
power supply/amplifier capable of delivering an audio-
frequency peak current of a few hundred milliamps at a 
few kilovolts is very expensive (~$14,000) and 
represent the most costly component required for the 
present test of the Woodward effect. 
 
 
A Driven Mass-Varying Oscillator 

 
We test for the presence of the Woodward effect 

by using the capacitor as the mass in a system that 
forms a driven mechanical mass-and-spring oscillator 
with an undriven resonant frequency of ωωωωo.  Such an 
oscillator is shown schematically in Fig. 1 

 

 
Figure 1.  Schematic mass-and-spring mechanical 
oscillator with time varying mass m+dm(t) and 
restoring-force spring constant k.  The system is 
assumed to have a dissipative damping force of −b 
dx/dt. 

 
The oscillator is driven at its resonant frequency 

ωωωωd=(ωωωω0
2 – b/2m)½ with a voice coil actuator and audio 

amplifier.  At the same time, we charge the capacitor 
sinusoidally, using approximately the parameters 

specified above, at a frequency of ωωωωd/2 so that, in the 
presence of the Woodward effect, the capacitor's 
inertial mass should vary at frequency ωωωωd. 

The inhomogeneous non-linear differential 
equation describing such a system is: 

),('')](µ[
)(')]('µ[)(]ω[
txtm
txtbtxktCosF dd

++
++=

 (6) 

where x(t) is the motion of the capacitor, Fd is the 
magnitude of the driving force, ωωωωd is the angular 
frequency of the driving force, k is the Hooke’s law 
restoring force constant, b is the damping constant 
representing dissipative forces in the system, m is the 
average mass of the capacitor and associated structure, 
and µµµµ(t) is the time-dependent mass variation due to 
the Woodward effect.  Note that the µµµµ’(t)x’(t) term in 
Eqn. (6) arises from the v dm/dt term in Eqn. (1). 

We can replace the spring constant k with m ωωωωo
2 

and replace µµµµ(t) with µµµµ0Cos(ωωωωdt + φφφφm), which assumes 
that we have arranged the mass variation to be at the 
same frequency as the driving force but shifted in 
phase by φφφφm.  With these substitutions, Eqn. (6) 
becomes: 
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This non-linear differential equation has no 
analytic solutions and must be solved numerically. Fig. 
2 shows the results of such numerical solutions of Eqn. 
(7), assuming that Fd/m=0.01, b/m=0.01, and 
µµµµ0/m=0.001.  The latter assumption represents only 
about 10% of the predicted 10 mg mass variation. 
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Figure 2.  Response phase shifts of the system to 
variable mass.  The central line is the system response 
with µ0=0.  The other two lines represent µ0=0.001 
with φm= −π/2 (low), and φm=+π/2 (high). The phase 
shifts shown are about ±0.04 radians=±2.3 degrees. 
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We find that when the mass variation has a relative 
phase of ±π/2 with respect to the driving force, it 
causes a positive or negative phase shift in the response 
motion by shifts, using the values listed above, of 
several degrees.  Other phases near 0 or π can cause an 
increase or decrease in the amplitude of oscillation. 
The experiment we have constructed is designed in an 
attempt to observe these phase-shift effects. 

Experimental Apparatus 
 
Fig. 2 below shows a top view of the mechanical 
oscillator arrangement, which we call the “Mach 
Guitar”.  The barium titanate capacitor test mass is 
suspended between pairs of tensioned wires, with the 
tension adjusted so that the resonant vibration 
frequency for vertical oscillations is about 1-2 kHz.   
 

 
 
Figure 2  Top view of “Mach Guitar” arrangement.  The capacitor is suspended between pairs of tensioned wires 
that provide the restoring force for the mechanical oscillator.  Capacitor drive voltage is supplied through the wires. 
 
 

 
 

Figure 3  Laser-optics table with oscillator removed, 
showing voice-coil drive (below) and laser position 
monitor (above). 

_______________________________________ 
 
Electrical connections for the capacitor drive voltage 
are supplied through the tensioned wire pairs.  The 
capacitor and its support structure have a net mass of 
about 1 g. 

The restoring force provided by the tensioned wire 
pairs is F=−−−−(8T/L)x, where T is the tension in a given 
wire, L is the overall length, from bridge to bridge, of 
the system, and x is the vertical displacement of the 
capacitor.  Therefore, neglecting the mass of the wire, 
the resonant frequency of the oscillator is 
ωωωωo=(8T/mL)½.  If m=1 g, L=0.5 m and ωωωω0=2π × 1000 
Hz, then the required tension is 553 lb.  This tension 
can be reached with 13 gauge steel wire. 

Fig. 3 shows a view of the laser-optics table (with 
oscillator removed) that is the foundation of the 
experiment.  A pre-drilled aluminum laser-optics base 
plate supports the general-purpose aluminum beam 
structures, on which are mounted (below) the voice-
coil drive (a modified audio speaker) for the 
mechanical oscillator, and (above) the laser position-
measuring device shown in Fig. 4. 

The Mach Guitar is mounted on the laser-optics 
base, which provides “bridges” to support for the wires 
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and their tensioning mechanism.  Electrical 
connections to the capacitance are made through the 
support wires.  Below the oscillator is an audio 
speaker, which drives the oscillator through a light 
spring.  Above the oscillator is a commercial laser 
position detector, which measures the vertical position 
of the capacitor’s upper surface by electronic 
triangulation.  The laser position sensor is shown in 
Fig. 4 
 

 
Fig. 4  Laser position measurement device. 
 

The mass-varying object used in the measurements 
is a low-loss and low-mechanical-movement barium 
titanate capacitor with a capacitance of about 9 nF and 
a voltage rating of 3 kV.  This oscillator mass is 
suspended between pairs of 13 gauge steel wires (0.25 
m long on each side) that have been tensioned to about 
500 lb to provide a system resonant frequency of about 
1000 Hz. 

 

 
Fig. 5  Trek Model PO923A HV Power Amplifier, 
used for driving the capacitor at 2 kV and 400 mA. 
 

As previously mentioned, the most challenging 
problem presented by the present experiment is driving 
the capacitor to high voltages at audio frequencies.  
The reason is that all high-voltage amplifiers driving 
capacitive loads are severely limited by the charging 
current that they must deliver.  We have selected a 
Trek Model PO923A High Voltage Power Amplifier, 
shown in Fig. 5, as the capacitor driver.  It can drive at 
voltages up to 2 kV with a peak charging current of up 
to 400 mA. 

The Mach's Principle test employs a Pentium-2 
850 MHz computer system with a Windows 98 
operating system for experiment control, using control 
software based on LabView.  It consists .of controls for 
the mechanical oscillator driver and the capacitance 
driver, a data collection system that records the drive 
signal and the position measurements, a data recording 
and retrieval system, and analysis software for 
processing the data and extracting the phase 
information of interest. 
 

 
 

Figure 6.  LabView control panel and display for 
system drivers. 
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The LabView control panel and display for the 
experiment is shown in Fig. 6 above.  The system 
generates sine waves with adjustable phases and 
amplitudes at two frequencies, normally set to differ by 
a factor of two.  The low frequency signal provides the 
input to the high voltage amplifier that drives the 
capacitor.  The high frequency provides input to an 
audio amplifier connected to a voice coil that drives the 
mechanical oscillator. 

 

 
 

Figure 7.  LabView data acquisition and display. 
 

Figure 7 shows the LabView panel for the data 
collection system.  The system samples the mechanical 
drive voltage and the capacitor position measurement 
of the mechanical oscillator as separate data streams.  
These are sampled for real-time display and also 
recorded on the system hard disk.  These data streams 
can be read back and re-analyzed.   The data are 
analyzed by integration over a long time period to 
extract the relative phase of the drive and response 
signals for a given setting of the capacitor drive phase 
with respect to the mechanical driver. 

The processed quantity that will be accumulated in 
the analysis is the cosine of the relative phase between 
the driving signal D(t) and the mechanical response 
signal R(t).  There are a variety of ways of extracting 
this signal, but the one we will use initially is: 

dttRdttD
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Here T is an arbitrary integration time that increases as 
data is collected and the running integrals are 
accumulated.  The values of Cos(φφφφ), which is near 0 
because φφφφ is approximately ππππ/2 on resonance, will be 
compared for the two most extreme settings of the 
phase of the capacitor drive, which should produce 
phase shifts like those shown in Fig. 2.  We estimate 
that with a data collection cycle of a few hours, Cos(φφφφ) 
can be determined to an accuracy of a few parts in 105.  
This should enable us to determine the shift in φφφφ to 
similar accuracy, providing a fairly stringent test of the 
presence or absence of the Woodward mass variation. 

 
 

Experiment Status 
 

The experiment is presently being reconfigured on 
the laser-optic table.  The initial cantilever arrangement 
is being replaced with the new “Mach guitar” 
mechanical oscillator system described above. 

The previous mechanical oscillator, which used a 
capacitor mass suspended at the free end of an 
aluminum cantilever, was tested and found to present 
three serious problems for the experiment: (1) its 
resonant frequency was fixed by the length and mass of 
the cantilever and was not easily adjustable, (2) The 
cantilever mass dominated that of the capacitor, greatly 
reducing the magnitude of the predicted effect and (3) 
it was not capable of achieving resonant frequencies 
above a few hundred Hz.  Since the size of the 
predicted mass-variation effect increases as ωωωω0

2, this 
was a serious limitation.  However, initial experience 
with this cantilever oscillator provided valuable 
experience in operating and testing the position 
measuring device and the data collection system. 

The new Mach Guitar oscillator provides 
significant improvements over the cantilever in 
reduced mass and increased operating frequencies, and 
it offers the additional advantage that it is easily 
tunable through simple adjustments of the wire tension. 

We expect to begin data collection with the new 
configuration in the next few weeks. 
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Conclusion 
 

The test of Mach’s principle and the Woodward 
effect described above is not yet completed, but it 
shows promise of providing an independent test of the 
predictions that does not depend on the possibility of a 
reactionless force.  The experiment in the present 
configuration is not as sensitive as the torsion-balance 
measurements recently reported by Woodward [7].  
However, since it is not based on a reactionless force, it 
may not need that sensitivity. 

If the Woodward Effect is observed, it will have 
important implications for general relativity and 
cosmology, for validating Mach’s Principle, for control 
of inertia, and possibly for propulsion.  If the 
Woodward Effect is not observed at the sensitivity 
limit of the experiment, this will also be worth 
knowing. 
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